


EXAMPLE 5.1

The linear shift-invariant system shown below is driven by a process with mean
m, and covariance function C,[l] = ¢26[l]. (This is white noise with an added
nonzero meain. )

b p| <1
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[t is desired to compute the mean, correlation function, and covariance func-
tion of the output, and the cross-correlation and cross-covariance functions
between input and output.



The mean of the output is very simple to compute:
Mo
1—0p
Since the input and output have nonzero mean, it is easiest to first compute

the auto- and cross-covariance functions. Then the corresponding correlation
functions can be computed by taking account of the mean.

o, S Bk = m, =
my mkzz—oo ] mkgop

The cross-covariance of the output is given by
Cyell] = Rl) % Co[l] = (p'ull]) * (026[1]) = o2 p'ull]

and therefore

Coyll] = Cpl=1] = o0 (p") " "u[=]]

Cayll]
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Then the autocovariance follows from

Clll =hll] « Coylll = % h[K]Cyyll — K]

k=—00
To help in carrying out the convolution, the terms in the summation are de-
picted below for a typical value of [ > 0.

(continued on the next page)
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Thus for [ > 0 the summation is

Cyll = 3 ptad(p)

Er.5.1(4)



Upon making the substitution ¢« = k& — [ this becomes
i oop
L—lpl*

Cylll = o5 X p™(07) = 026 X (1l L>0

In a similar manner, for [ < 0 we find

2( x\—I
C,ll] = M; [ <0
L —1pl
The cross-correlation function can now be computed as

R.,|l] = Culll +m,m;
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Observe that when the mean is zero, this is the exponential correlation func-
tion encountered before. This shows that a process with the exponential cor-
relation function can always be generated by applying white noise to a stable
first order system. The variance parameter o2 of the process is given by

2
2 0,

1P
In the real case (with zero mean) the correlation function has the simpler form

0.2

Ryl = G)ll] = 5 _OPQp‘” -V
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EXAMPLE 5.5

A complex spectral density function has the form

This function satisfies the required condition S,(z) = Si(1/z*). The power
spectral density function is

ng(ejw) _ 62 COS W

which is positive for all values of w. The function satisfies the Paley—Wiener
condition since

/" [ InS,(e™)|dw = ["_|2cosw|dw < oo

The factorization can be done by inspection to obtain
1

Si(z)=1-¢ ¢

where the causal factor is seen to be
1

H.(z) =€

which converges everywhere except at z = 0.



The impulse response of the filter is given by

hsln] = ;!u[n]

where u|n| is the unit step function. This follows because
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EXAMPLE 5.101

The complex spectral density function
—422 +10 — 4272
222+ 5+ 2272

Sy(z) =

can be factored as

Siz) = —2—22 T2




This expression can be rewritten as
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EXAMPLE 5.6

A complex spectral density function for a certain real random process is
)
33(’2) o -1
z—(a+1/a)+z
This can be written in the equivalent form
1 B 1 1
—az+(1+a?)—az! 1—az! 1—az

Sy(z) =

which leads to the correct identification IC, = 1 and
1

:1—az_

H..(2) -

Notice a possible pitfall here. Suppose the function had been factored as
1 1

Sa: pu— _—
(2) —az+ (1+a?)—az7! (z—a)(z7'—a)
then it might be tempting to take
1 21
Heo(z) = = (1)

z—a 1—az!



since it satisfies the symmetry condition
1

H,(1/2") = Hel27') = i

However the term (I) is not minimum-phase. It has a zero at z = oo for one
thing. The inverse z-transform is

a" tuln — 1]

where u[n] is the unit step function, so the partial energy is not smaller than
that of the impulse response

a"u|n|
which 4s minimum-phase. Also the inverse

Hz)=2—a

ca

1s not causal.

This problem can be resolved by supplying an extra pole and zero at the
origin; that is, by writing S,(z) in the equivalent form

Z z_l Z z_l

Sl2) = —az+ (14 a?) —az™! N (z —a) | (271 —a)
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This is now a correct spectral factorization with

z 1
Hca — —
(2) z—a 1—az1

which is truly minimum-phase. O
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EXAMPLE 5.4

A simple real transient signal has the form shown below

sin] = a""ouln — ny

1 lal < 1

Mo

where u|n| is the unit step function. It is desired to design an FIR matched
filter to detect this signal in noise.

If the signal is regarded as having some finite length P, after which it is
essentially zero, then the impulse response of the matched filter, is proportional
to the reversed truncated signal

1
hin] = gt 0<n<P-1
TolS||




The normalizing constant is given by

1/2
B P-1 2)1/2_ 1 —a?f
oolls| = 0 (kZ()(a Fl =0l

The impulse response is depicted below.

hin]

P-1 n
(np—ni0)
The signal-to-noise ratio is given by
Is? 1 (1—a?f
SNR = — =
o2 o2 ( 1 —a?
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Now consider the case where the noise is not white, but has the exponential

correlation function.

R[] = opl!l =

2
0y

5P

l—=0p

]

Problem 3.26 in Chapter 3 shows that the inverse correlation matrix corre-
sponding to this correlation function has a particularly simple banded form.
This is depicted below for the case of P = 5.
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The matched filter thus has the form
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where SNR here represents the maximum signal-to-noise ratio, achieved by the
matched filter. The terms of the matched filter are

1

h|0] =
0 o2v/SNR
b 1
T —
" 02V/SNR
_ 1
hl4] =

o2v/SNR

4

a — pa

:<1 . p2>CL4_n . IOCLB_n

1 — pal

To evaluate SNR, observe that the inverse correlation matrix can be factored

as

-1
R77 —

1
72
O-O

1 0 0 0 0][1l=p 0 0 0°
—p 1 0 0 0[l01 —p 0 0
0 —p 1 0 0[/00 1 —p 0
0 0 —p 1 0[100 0 1 —p
0 0 0 —p1/l00 0 0 1

Therefore SNR can be _Written as

SNR = s"R;'s = STR;71/2(R7_71/2)TS = (¢')'s' = 18’

)
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where

1 —p 0 0 0 ]]1 1 — pa
(101 = 00 ||a | a(l — pa)
s’ = (Rﬁm)Ts =—10 0 1 —p 0 ||a®| =—]a*(1— pa)
%010 0 1 —p||a®| °]d*(1 - pa)
0o 0 0 0 1 at | a

SNR is then given by

1
SNR = |s'|° = — (1 - pa)*[1+a*+a' +a° +a®/(1 — pa)?
O-O
The filter impulse response is depicted below for the parameter values a = 0.95,
02 = 0.25, and p = —0.40 (negatively correlated noise). Note that when the

noise is not white, h|n| does not necessarily resemble the signal (see next page).

Ex.5.4(5)



13 SNR = 29.0
(Values are 0.86, 1.05,1.10, 1.16, 1.03)

It is not too difficult to generalize the above formulas for the special case of
P =5 to an arbitrary value of P. The results are:

: 1

hl0] = — pla’
0] p ST
| 1 2 2\\ P—2—n
— — — <n<pP —
hin 0§m<<1 pola—p(l+a”))a 1<n<P-2
1
h[P —1] =

1 —
S2J/5NR LT P
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where the value of SNR is

1 1 — aQ(P—l) aQ(P—l)
SNR = —(1 — pa)?
02( pa) —a (1 — pa)?

(0]

Ex.5.4(7)



